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Abstract 
 

Phage therapy uses bacteriophages (viruses) that eliminate bacteria, as a substitute to antibiotics to cure bacterial infection. With the significant increase of 
antibiotic-resistant strains, bacterial infections have become a very challenging global health concern. In contrast to antibiotics, phage therapy has various benefits, 
like its narrow host range that selectively targets specific bacterial strains while not affecting beneficial microbiota. Phages can be conveniently isolated and 
produced on a large scale, potentially making phage therapy a cost-effective alternative for bacterial illness. The history of the phage therapy started in early 20th 
century when it’s potential for combating bacterial infections was discovered. With the discovery of antibiotics, its popularity declined in Western world, but it 
remained in use in Eastern Europe. The ever-increasing antibiotic resistance against antibiotics, has again renewed our interest in phage therapy. Phages have a 
complex life cycle involving the lytic and lysogenic cycles. Phage therapy utilizes various mechanisms, including inhibition of cell wall biosynthesis in growing 
bacterial cell by phages with small genome and production of several protein like holin and endolysin (that lyse the cell membrane of the host bacteria) and 
modulation of host immune reaction by phages with large genome. Promising results of phage therapy have been found while treating bacterial infections caused 
by multidrug-resistant bacterial strains. However, issues such as phage resistance and immune responses are required to be addressed. Despite these challenges, 
phage therapy has proven to be viable approach to combat bacterial infections, especially against antibiotic resistance bacterial strains. There is need for further 
study and development in field of phage therapy for realizing its full potential in clinical practice. 
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1. Introduction 
 

Bacterial infections are a primary contributor to mortality death 
globally. For the past several decades, antibiotics have been primarily 
used for treatment of bacterial infections. But with the developments 
of antibiotic resistance bacterial strains, its treatment has become a 
significant challenge in the recent year (Laxminarayan et al., 2013; 
World Health Organization, 2014). Phage therapy has been proved to 
be alternative treatment option in such cases. Phage therapy utilizes 
the ability of phages (bacteriophages, a type of virus) to specifically 
infect and kill bacterial cell. Before the emergence of antibiotics, 
phages were actively being utilized for the treatment of bacterial 
infection (Summers, 2001). With the global application of antibiotics, 
phage therapy, however, fell out of favor in the Western world. But in 
Eastern Europe, it has remained to be practiced where it has been a 
part of mainstream clinical practice over many years (Żaczek et al., 
2020).  
 

In the recent time, scientist has shown a renewed interest in use of 
phage therapy to cure bacterial infection in humans, as an alternative 
option or supplementary to antibiotics. It has various of advantages 
against antibiotics, including their narrow bacterial host range, which 
allows for targeted killing of specific bacterial strains while leaving 
the beneficial microbiota intact (Gorski and Weber-Dabrowska, 
2005; Chan et al., 2013). Additionally, phages can be easily isolated 
and produced in large quantities, making them a potentially cost-
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Figure 1. Graphical abstract: Phage therapy presenting a potential 
treatment for bacterial infections in humans. This figure was made by using 

BioRender (https://www.biorender.com). 
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effective treatment option (Loc-Carrillo and Abedon, 2011; Lin et al., 
2017; Nagel et al., 2022). 
 

Studies has indicated effective and safe application of phage therapy 
for the clinical treatment of multidrug-resistant (MDR) bacterial 
infections in humans (Jennes et al., 2017; Schooley et al., 2017). 
However, there are also many challenges linked with phage therapy, 
including development of phage resistance, the need for precise 
identification and matching of phages to the bacterial strains causing 
the infection, and regulatory hurdles linked with the clinical 
application of phages in human treatment (Golkar et al., 2014; 
Schooley et al., 2017). 
 

Despite these challenges, phage therapy holds promise as a viable 
approach to cure bacterial infections in humans, particularly in the 
time of the ever-increasing threats of resistance against important 
antibiotics. In this review article, we have aimed to describe precisely 
about the fundamentals of phage therapy, including life cycle of 
phages, their mode of action, their potential advantages and 
shortcomings. Additionally, we also elaborate the current status of 
phage therapy research, including its potential applications in the 
bacterial infection treatment and apparent challenges that must be 
overcome for its widespread adoption in clinical practice. 

 
2. History and current prospective of phage 
therapy 
 

Phage therapy, application of bacteriophages to treat of bacterial 
infection, has a history started in the early 20th century. In 1915, 
Frederick Twort discovered that a virus could infect and kill bacteria, 
and Félix d'Herelle autonomously discovered bacteriophages in 1917 
and coined the term "phage" (Carlton, 1999; Sulakvelidze et al., 
2001).  Application of phage therapy became popular during the 
1920s and 1930s in Eastern Europe, particularly in the Soviet Union. 
It was used for the treatment of many bacterial infections, including 
typhoid fever, dysentery, and wound infections, with reported success 
rates as high as 80% (Sulakvelidze et al., 2001). In the West, however, 
the advent of antibiotics to treat bacterial infections during 1940s 
ushered to a decline in interest in phage therapy, as antibiotics were 
seen as a more reliable and easier-to-use alternative. Eastern Europe 
continues to employ phage treatment and other parts of the world, 
but research and development of phage therapy lagged behind that of 
antibiotics in the West (Kutter and Sulakvelidze, 2004; Sharma et al., 
2016).  In recent decade, clinical application in the phage therapy has 
been renewed as a prospective substitute to antibiotics, especially in 
the time of rising resistance against important antibiotics. It has been 
applied successfully to treat several bacterial infections, including 
MDR bacterial strains infection (Schooley et al., 2017; Dedrick et al., 
2019). However, there are still few challenges to overcome, including 
issues related to phage selection, delivery, and regulatory approval 
(Fauconnier, 2019). 
 

3. Fundamentals of phage therapy 
 

3.1. Phages and their life cycle 
 

Phages, previously known as bacteriophages, are a class of viruses 
that are proved to infect and kill bacteria specifically. These are most 

diversified and abounding biological entities on earth, with roughly 
estimated population of 1031 (Ackermann, 2007; Dion et al., 2020). 
Phages play crucial role in ecology of microbial communities, 
influencing abundance, diversity, and evolution of bacterial 
populations. 
Phages mainly shows two type of life cycles; lytic cycle and lysogenic 
cycle. 
 

A. Lytic Cycle: In this cycle, the phages infect a bacterium, 
reproduces rapidly, and causes lysis of host bacterial cell, or burst 
open, releasing new phage particles. The steps involved in the lytic 
cycle of phages are as follows: 
 

1. Attachment: This is first step in the lytic cycle, in which the phages 
are attached to the host bacterial cell through specific receptor on its 
surface. The receptor is usually a specific molecule on the bacterial 
surface, such as a protein or a sugar. The attachment is mediated by 
the tail fibers and is highly specific (Sharma et al., 2016; Lin et al., 
2017). 
 

2. Penetration: After attaching to the surface of host bacterial cell, 
DNA of phage is injected into the bacterial cytoplasm using its tail and 
the basal plate. The tail contracts, and the basal plate acts like a 
hypodermic needle, resulting in injection of phage DNA into bacterial 
cytoplasm through the cell wall and cell membrane. This method of 
DNA injection is still to be understood precisely, but researches have 
shed some light on the role of different phage proteins involved in this 
process (Zinke et al., 2022). 
 

3. Replication: After entry inside host bacterial cell, phage DNA start 
controlling bacterial machinery in such a way that bacterial cell 
facilitates phage DNA replication. The phage DNA administers the 
host cell to produce all the necessary enzymes and proteins for the 
phage replication. The replication of phage DNA is highly efficient 
and can reach rates of up to 2000 base pairs per second (Loenen and 
Murray, 1986; Sharma et al., 2016). 
 

4. Assembly: As the phage DNA replicates, newly synthesized phage 
particles are assembled inside the host bacterium. The phage head is 
assembled first, and then the tail fibers are added. Finally, the new 
phage particles are encased with the phage DNA. The assembly 
process is tightly regulated by the phage proteins, and any defect in 
the process can result in non-infectious phage particles (Casjens and 
Hendrix, 2005). 
 

5. Lysis and release: When the host cell is unable to contain the 
increasing number of phage particles, it lyses or bursts open, 
releasing the newly formed phages into the environment to infect 
other host cells. The process of lysis is mediated by the phage lytic 
enzymes, which degrade the bacterial cell wall and membrane 
(Young, 2014). 
 

B. Lysogenic cycle: This cycle is more complex than lytic cycle. In 
this, phage integrate its DNA into the main genome of host bacterium 
and phage DNA replicates as integral part of the host DNA. The 
lysogenic cycle has the following steps: 
 

1. Attachment and penetration: The first steps of the lysogenic cycle 
are similar to lytic cycle. Phage attaches to the surface receptor of host 
bacterium and injects its DNA into the cytoplasm of host bacterium. 
The process of penetration is facilitated by the same proteins as in the 

Table 1. Phage therapy and mode of action 
 

Mode of Action Description References 
Lysis of bacterial cell by 
inhibition of cell wall 
peptidoglycan biosynthesis 

Phages with the small genomes like RNA phage Qb or Coliphage ΦX174 
utilizes single effector protein, which inhibit peptidoglycan synthesis in 
growing bacterial cell. This action ultimately results in bacterial cell lysis. 

Bernhardt et al., 2001a, b; Sulakvelidze et 
al., 2001; Bernhardt et al., 2002,  
Catalão et al. 2013. 
 
 

Production of holin and 
endolysin proteins 

Coordinated action of holin and endolysin protein result in the bacterial cell 
lysis, where holin protein form pore in cell membrane and endolysin digest 
cell wall of bacteria.  
 
 

Bernhardt et al., 2002;  
Schmelcher et al., 2012;  
Catalão et al., 2013. 
 
 

Modulation of host immune 
response 

Some phages induce the production of pro-inflammatory cytokines and 
activate phagocytic cells, and some decrease pro-inflammatory cytokines and 
chemokine depending upon immunological balance to enhances the host 
immune response and aids in the clearance of the infection. 

Eriksson et al., 2009; Petrovic Fabijan et 
al., 2020; Souza et al., 2023. 
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lytic cycle (Wommack and Colwell, 2000; Sulakvelidze et al., 2001; 
Young, 2014). 
 

2. Integration: Once inside the cytoplasm of host bacterium, phage 
DNA is integrated into the main genome of host bacterium. This 
process is accomplished through the activity of integrase enzyme, 
which catalyzes the recombination of phage DNA into the host 
genome. The integrated phage DNA is now known as prophage 
(Howard-Varona et al., 2017). 
 

 3. Replication and cell division: The prophage replicates along with 
the host genome during cell division, and the daughter cells inherit 
the prophage DNA. The prophage remains dormant in host 
bacterium, and no phage particles are produced. 
 

4. Induction and lytic cycle: Under certain conditions, such as 
exposure to UV radiation or certain chemicals, the prophage may be 
induced to exit the genome of host bacterium and initiate usual lytic 
cycle. During the lytic cycle, the phage multiplies in large number and 
ultimately lyses the bacterial host cell to release new phage particles. 
The process of induction is regulated by the phage-encoded proteins, 
which can sense the host's physiological state and respond 
accordingly (Clokie et al., 2011; Howard-Varona et al., 2017). 
 

Phages have been widely researched which resulted in discovery of 
many applications in various fields, such as biotechnology, medicine, 
and food safety. Phages have been clinically utilized to control or 
eliminate bacterial infections in animals and humans, to 
decontaminate food, and to manipulate bacterial populations in 
industrial processes (Lu and Koeris, 2011). 
 

Thus, phages are viruses that are proved to infect and kill bacteria 
specifically and play critical function in the ecology of microbial 
communities. In lytic cycle, phage replicates rapidly and lyses the 
bacterial cell, resulting in the release new phage particles. In 
lysogenic cycle, phage insert its DNA into the bacterial chromosome 
and reproduces as a component of the bacterial genome. The 
prophage remains dormant until it is induced to get separated from 
the genome of bacterial host and enter in the lytic cycle (Campbell 
and Reece, 2005; Howard-Varona et al., 2017). Phages have 
numerous applications in various fields and hold promise for the 
future development of new therapies and technologies. 
 

 
3.2. Phage therapy and mode of action 
Phage therapy can be defined as curative application of 
bacteriophages for the treatment of specific bacterial infections. It has 
been applied for over a century, primarily in Eastern Europe and 
erstwhile Soviet Union. There was a period of decline due to discovery 
and wide use of antibiotics, but it regained scientific and clinical 
interest in recent years due to ever increasing problem of antibiotic 
resistance (Sulakvelidze et al., 2001). 
 

The mode of action of phages in therapy is multifaceted and can differ 
depending on the specific phage-bacterium interaction. However, 
there are some prevailing mechanisms by which phages. To escape 
from the host cell, phages employ two different strategies. In First, 
phages (like bacteriophage λ) with large dsDNA genome encode holin 
and endolysin protein. The coordinated work of these protein results 
in the lysis of host bacterial cell. Holin protein oligomerizes to form 
pores in bacterial cell membrane through which endolysin protein is 
secreted in periplasmic space. This endolysin digest cell wall of host 
bacterium by cleaving the peptidoglycan (Bernhardt et al., 2002; 
Schmelcher et al., 2012; Catalão et al., 2013). In second, phages (like 
RNA phage Qb or Coliphage ΦX174) with small genome utilizes single 
effector protein, which inhibit particular step of biosynthesis of cell 
wall peptidoglycan in growing bacterial cells. Incomplete cell wall 
synthesis results in the host cell lysis (Bernhardt et al., 2001a, b; 
Bernhardt et al., 2002, Catalão et al., 2013) (Table 1). In addition to 
bacterial cell lysis, phages can also modulate the host immune 
response. Some phages are known to induce production of pro-
inflammatory cytokines and activate phagocytic cells, such as 
neutrophils and macrophages (Eriksson et al., 2009; Petrovic Fabijan 
et al., 2020). Phagocytic activity is also supported by decrease in 
reactive oxygen species by phages (Souza et al., 2023). In some case 
phages have shown to induce anti-inflammatory response or decrease 
in pro-inflammatory chemokines and cytokines. Thus, phages may 
induce an anti-inflammatory or pro-inflammatory response 
depending upon the ultimate immunological balance to enhance the 

host immune response and aid in the clearance of the infection (Table 
1). 
 

3.3. Benefits and challenges of phage therapy 
 

Phage therapy has various benefits over antibiotics, including their 
specific or narrow host range, which allows for targeted killing of 
specific bacterial strains while leaving the beneficial microbiota intact 
(Chan et al., 2013; Lin et al., 2017; Khan et al., 2022). Additionally, 
phages can be easily isolated and produced in large quantities, 
making them a potentially cost-effective treatment option (Harper et 
al., 2014). Phage therapy has shown its significance in the treatment 
of several types of bacterial infections, including infections arising 
due to MDR bacterial strains (Adebayo et al., 2017; Lin et al., 2017; 
Arumugam et al., 2022; Durr and Leipzig, 2023) (Table 2).  In a study 
of patients suffering with chronic otitis resulted by MDR 
Pseudomonas aeruginosa, phage therapy resulted in remarkable 
decrease in bacterial load and clinical improvement in majority of 
patients (Wright et al., 2009). Similarly, in a case report of patients 
with MDR, Acinetobacter baumannii infection, phage therapy led to 
complete clearance of the infection (Schooley et al., 2017). 
 

However, there are few challenges need be addressed while applying 
phage therapy to cure bacterial infection. In some cases, host 
bacterium develops resistance against phage which possess potential 
challenge in phage therapy. This can occur through a range of 
mechanisms, like mutations in phage receptors or the production of 
phage-resistant variants (Chan et al., 2013) (Table 2). To address this 
challenge, phage cocktails that target multiple bacterial strains or 
phages with different mode of action can be used. Also, there is need 
for precise identification and matching of phages to the host bacterial 
strains causing the infection, and regulatory hurdles associated with 
the application of phages in human medicine (Brüssow and Kutter, 
2005; Pirnay et al., 2011) (Table 2). These challenges highlight the 
need for continued detailed research and development in the area of 
phage therapy to overcome these obstacles and to fully realize the 
potential of this method for the clinical treatment of bacterial 
infections (Table 2). 
 

Another challenge is the emergence of immune responses against the 
phage itself. In some cases, patients may develop antibodies against 
the phage, which can limit the efficacy of treatment (Petrovic Fabijan 
et al., 2020; Hibstu et al., 2022). However, this can be addressed by 
selecting phages with low immunogenicity or by using phages in 
combination with immunomodulatory agents (Eriksson et al., 2009; 
Petrovic Fabijan et al., 2020; Souza et al., 2023). 
 

4. Applications of phage therapy 
 

4.1. Bacterial infections treatable by phage therapy 
 

Phage therapy has shown promising results to cure of various 
bacterial infections. Phage therapy also targets pathobionts in 
diseases like inflammatory bowel disease (IBD) showing immune 
modulation which reduces bacterial load without antiphage 
resistance in IBD (Pessina et al., 2023) (Figure 2). Another example 
is successful recovery of patient from urinary tract infections (UTIs) 
by Escherichia coli. In a clinical trial, a phage cocktail was 
administered to patients with UTIs caused by antibiotic-resistant E. 
coli, resulting in a complete cure in 80% of cases (Sarker et al., 2012) 
(Figure 2).  
 

Phage therapy has also been investigated as a possible cure for 
respiratory infections, such as, those caused by bacterial species, 
Pseudomonas aeruginosa (Marza et al., 2006; Chang et al., 2018; 
Chang et al., 2022) (Figure 2). It has been suggested as a substitute to 
reinstate intestinal eubiosis in the absence of effective treatments 
because of immunomodulatory and bactericidal effects of phages 
against pathogenic bacteria, including invasive adherent Escherichia 
coli in Crohn's disease and Clostridioides diffcile in ulcerative colitis 
(Gutiérrez and Domingo-Calap, 2020). 
 

Although antibiotic treatments are given to a patient, COVID-19 
children who develop secondary bacterial infections (SBIs), as a 
consequence of coronavirus infections, have much worse outcomes. 
Phages, which naturally destroy bacteria, are thought to be a possible 
alternative for antibiotics in the clinical treatment of bacterial 
infections in lungs. But their application in treating SBIs during viral 
pandemics like COVID-19 is not well understood (Wu et. al., 2022). 
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The COVID-19 patients who developed secondary bacterial infection, 
about 75% of them were treated with antibiotics during coronavirus 
infections. 
 

The over use of broad-spectrum antibiotic contributes the 
development of antimicrobial resistance (AMR) which ultimately give 
negative affects to recovery of such patients due to the specific 
characteristics of the gut-lung axis. Phage therapy can be applied as 
an effective alternative treatment to treat COVID-19 patients because 
it does not contribute to AMR development and give positive impacts 
to the treatment (Khan et. al.,2022). 
 
4.2. Potential use in multi-drug resistant infections 
 

Phage therapy has again secured attention of researchers in recent 
years due to ever increasing occurrence of antibiotic-resistant 
bacterial stains. Antibiotic resistance is an important health concern 
globally, and there is an urgent need for alternative treatments. Phage 
therapy has the prospect to be a highly effective and targeted 
treatment for MDR infections because phages can target and kill 
bacteria specifically without harming body's own cells. 
 

Phage therapy has been proved to be successful in treating bacterial 
illnesses caused by MDR strains in several studies. For example, in a 
study, a patient with a severe MDR Acinetobacter baumannii 
infection was successfully treated with a cocktail of phages (Fish et 
al., 2016). Phage therapy has also been investigated as a possible 
remedy for infections resulting from other MDR bacterial strains, 
such as Klebsiella pneumoniae and methicillin-resistant 
Staphylococcus aureus (MRSA) (Atshan et al., 2023; Zaki et al., 
2023). In one treatment of skin infections caused by Staphylococcus 
aureus, which is commonly known as a "superbug" due to its 
resistance to multiple antibiotics. In a study, a topical use of a phage 
cocktail was applied to treat S. aureus skin infections in mice, 
resulting in a significant decrease in bacterial load and faster healing 
compared to control groups (Kifelew et al., 2020) (Figure 2). 
 

4.3. Combine use of phage therapy along with antibiotic 
 

In some cases, phage therapy is combined with antibiotic treatment 
to cure the bacterial infection. Combining phage therapy and an 
antibiotic can cure or delay proliferation of bacterial infection such as 
a 62-year-old patient had a chronic hip prosthetic joint infection (PJI) 
which is caused by bacteria Pseudomonas aeruginosa was 
successfully treated with the help of a combination of personalized 
phage therapy along with antibiotic meropenem (Cesta et al., 2023) 
(Figure 2). Another infectious disease Pneumonic plague which is 
caused by Yersinia pestis, is presently cured with antibiotics but in 
some cases of MDR strains, combination of second-line antibiotic 
(ceftriaxone) with phage therapy has found to be retarded mortality 
and restricted bacterial expansion in the lungs (Vagima et al., 2022) 
(Figure 2). Other that these, a study has found that phage-antibiotic 
combinations have effective eradication of biofilms formed by 
Staphylococcus aureus strains which are difficult to eliminate which 
showed superior efficacy of phage-antibiotic combinations compared 
to using either of antibiotics or phage alone, showcasing its potential 
for fighting against biofilm infections (Kebriaei et al., 2023). 
 

4.4. Current status of phage therapy research 
 

Phage therapy is a swiftly evolving field, and there is continuous study 
targeted at improving its efficacy and safety. Phage therapy is also 
being now used in treatment of cancer where phages are utilized as 
delivery vehicle for various therapeutic genes and drugs (Petrov et al., 
2022). One area of research is the development of phage cocktails, 
which are mixtures of phages that target multiple strains of bacteria. 
Phage cocktails have been shown to be more suitable and effective 
than individual phages in treating bacterial infections, as they can 
target a huge range of bacteria (Chan et al., 2013). 
 

Another area of research is the development of tools for rapid 
identification of phages effective against specific bacterial strains. 
This is important for the timely treatment of infections, as it can take 
several days to isolate and characterize phages. One approach is use 

Figure 2. Application of Phage therapy. This figure was made by using BioRender (https://www.biorender.com).  
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of high-throughput sequencing techniques to identify and 
characterize phages in particular environmental samples. Other 
techniques like genome editing by CRISPR-Cas and synthetic biology 
in the field of phage research will create new avenues (Chen et al., 
2019).  
In addition, research is ongoing into the safety and regulatory aspects 
of phage therapy. Phages are regarded as safe for human use, as they 
are natural and non-toxic, but there is a need for standardized 
protocols for the production, purification, and quality control of 
phages for clinical use (Loc-Carrillo and Abedon, 2011; Lin et al., 
2017). 
 

5. Conclusion 
 

In conclusion, phage therapy is a promising substitute to cure 
bacterial infections, particularly caused by MDR bacterial stains. The 
approach of phages therapy is multifaceted and can involve direct 
lysis of the bacterial cell, production of lysins, and modulation of the 
host immune response. However, application of phage therapy 
possesses several challenges, including the development of phage 
resistance and immune responses to the phage itself. Ongoing 
research is focused on optimizing its efficacy and safety, and phage 
therapy has the significant potential to become an important tool in 
the fight against antibiotic-resistant bacteria. 
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